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Abstract

Bioinformatics is a highly interdisciplinary field where techniques and concepts from infor-

matics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics merge into a

single branch of science. The most prominent and important of these disciplines is information

processing. Bioinformatics is the science of using computers to handle biological information.

One of the biggest achievements in the quest for mystery of life is the complete sequencing

of human genome. The Human Genome Project successfully discovered the fact that humans

are almost 99% identical at the DNA level. Therefore what makes us different is very small

region of the whole genome. The smallest possible variation in DNA sequence is the Single

Nucleotide Polymorphism. Haplotyping is the process of locating and determining SNPs. In

our thesis we will look into the efficient way of detecting haplotypes from erroneous data.

Another important field of bioinformatics is phylogeny. The basic principle of phylogeny is

that the origin of similarity is common ancestry. Based on that principle phylogeny tries to

determine common ancestral relations. This relationships are easily expressed as a tree known

as phylogenetic tree. Pairwise compatibility graph is descended from phylogenetic tree which

is an alternate way to express evolutionary relationship.

In our thesis we analyze and compare different haplotyping algorithms based on minimum

error correction approach by simulating with original biological data as well as generated data.

Most of our task was devoted to simulation. We also study the pairwise compatibility graphs

and go a long way to characterize different classes of graphs as pairwise compatible. We also

introduce a new notion which we call improper pairwise compatibility graph and also show

that every graph fall into this class. The techniques we used to characterize different classes of

graphs as pairwise compatibility graph are quite generic and can be utilized in different similar

tasks.

x
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Chapter 1

Introduction

Analysis of biological experiments and processes is labor intensive and time consuming due to

the increasing complexity of the processes and explosive growth of biological data emerging

from laboratories worldwide. Hence, the recent challenge is to transform this huge data into

knowledge for complete understanding of the biological processes and experiments relating to

both health and diseases. The quest for this knowledge has given rise to a new era of science,

bioinformatics.

Bioinformatics is a highly interdisciplinary field where techniques and concepts from infor-

matics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics merge into a

single branch of science. The most prominent and important of these disciplines is informa-

tion processing. Therefore, “bioinformatics” can be stretched as “Biological information

processing”. More precisely, bioinformatics derives knowledge from computer analysis of bi-

ological data. The development of powerful computers, and the availability of experimental

data, that can readily be treated by computation, launched bioinformatics as an independent

field.

From the perspective of information processing, bioinformatics can be divided into several

areas. The major areas are :

• Develop better tools for data generation, capture, and annotation. An example of data

generation would be “shotgun sequencing” which identifies the sequence of nucleotides of a

target DNA molecule.

2
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• Develop and improve tools for comprehensive functional and relational analysis. Numerous

tools for phylogenetic analysis of biological data have already been developed to determine the

evolutionary relationship among species.

• Develop and improve tools for representing and comparing sequence similarity and variation.

An example would be BLAST (Basic Local Alignment Search Tool) which aligns two or more

sequence and computes different similarity and dissimilarity measures.

• Improve content and utility of biological databases to store the data in effective ways. An

example would be GenBank. GenBank, developed and housed at NCBI (National Center for

Biotechnology information), is the U.S depository for all DNA and protein sequences containing

more than 61 million sequence records.

• Create mechanisms to support effective approaches for producing robust, exportable software

that can be widely shared.

Each of these areas are evolving day by day and are subjects to extensive research. The next

section of this chapter contains a snap of the history of bioinformatics. The section following it

contains an overview of the computations required in bioinformatics. Finally the scope of this

thesis is detailed.

1.1 History of Bioinformatics

The generation of micro-biological data was started first in 1955 when amino acid sequence

of a protein (bovine insulin) was announced for the first time by F. Sanger. Since then, hun-

dreds of proteins have been sequenced and analyzed and the need for creating a data bank

for these proteins so that the information can be spread very easily to all. In 1973 one such

Protein Data Bank (PDB) named Brookhaven was announced. This PDB was fully described

in 1977 (http://www.pdb.bnl.gov). These PDBs were actually in printed form because of the

unavailability of desktop computers and communication facilities at those days.

The first complete genome sequence for an organism (FX174) was published in 1980. The

gene consists of 5,386 nucleotide base pairs encoding nine proteins. Just after one year, in 1981,

IBM introduced its personal computer in the market and concurrently the smith-waterman
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algorithm for sequence alignment was published. The growth of computer performance and

biological data is exponential since then and leads to the creation of some new databases

like SWISS-PR0T in the ’80s. Many organizations were also founded in that decade namely

Genetics Computer Group (GCG), National Center for Biotechnology Information (NCBI), etc.

Whole genome sequences are published for different single cell organisms like Haemophilus

influenza of 1.6 Mbp (million base pair), baker’s yeast of 12.1 Mbp, E. coli of 4.7 Mbp in

’90s. The Human Genome Project has successfully published the complete sequence of human

genome (3000 Mbp) in 2001.

Biochemical methods to sequence, recombine and engineer the DNA sequences have been

developed by the 90s. Besides, new modeling and analysis provides new dimensions in the

datasets. Thus, the growth of the datasets obviates the necessity of various forms of computa-

tion in bioinformatics from the beginning of this decade.

1.2 Computations in Bioinformatics

Computations required in bioinformatics varies largely depending on the objective of the ap-

plication. Almost all the developed branches of computer science have strong applications in

bioinformatics. Some examples of the computational tools that are used in bioinformatics are

given below.

Graphs are used to represent relationships among species on different physical and micro-

biological criteria. For example, the evolutionary relationships among the existing species are

expressed in a tree structure called phylogenetic tree. Graphs are also used in problems to

analyze biological data.

Numerical simulations of biological systems are used to model systems that are very difficult

to be modeled by analytical methods and deterministic operations. For example, the genetic

regulatory networks can be modeled by stochastic process. Similarly, host-parasite system,

ecosystem etc are well studied through numerical simulation.

Machine learning has many applications in bioinformatics. Generally biological data are

huge in quantity but with no established theory. For such data, learning theories provide
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methods to gain an insight into the underlying theory of the origin of these data. Besides,

statistical analysis can be used in population oriented biology like epidemic controlling, drug

designing, etc.

Data mining and advanced database technology are one of the main part of biological

information analysis and preservation. The huge amount of data requires efficient processing

to maximize their use in research and educational purpose.

1.3 Scope of Part I

There are varieties of applications of graph theory in modeling, representing, analyzing and

comparing biological data. Our study covers two major areas concerning the data generation

through biological experiments and analyzing represented data.

The first area we covered is computational problems of constructing haplotypes. Haplotypes

are sequence of nucleotides that are positioned into some fixed sites in the DNA molecule

called the SNP sites. Experimental readout can not completely determine haplotypes due

to the lack of precision and correctness in constructing haplotypes, that’s why methods are

required to build the haplotypes in an optimum way so that the reliability of the haplotypes

maximizes. In modeling such optimization problems graphs are extensively used [CvIKT05,

BVDL03, BILR05]. We studied several models and in this thesis, we have compiled the problems

in a well sorted fashion. Besides, we provide an heuristic algorithm to one of the optimization

problems of correcting minimum errors in a set of nucleotide sequences.

The second area we covered is the analysis of relationships among species through phy-

logeny. Phylogeny is also a well developed branch of bioinformatics. Construction, assembling,

visualizing and sampling of phylogenetic trees are major applications of graph in this branch

[ACJ03, KMP03, MM81]. In this thesis, we discuss the majority rule method of assembling

phylogenetic tree from many small trees. We also discuss a way of arranging haplotypes in

phylogenetic order which justifies the relation between the major two areas of our study.



Chapter 1. Introduction 6

1.4 Summary

In this chapter highlighted bioinformatics from the biological and computational viewpoints.

We also placed a short history of bioinformatics to demonstrate the rapid growth of biological

data throughout the world. The final section describes the scope of our thesis.



Chapter 2

Preliminaries

Bioinformatics involves the use of techniques of computer science in the field of biology or

biochemistry to solve biological problems usually on the molecular level. Hence, it is worth

reviewing and initiating these concepts in a brief manner. The first section is about the typical

structure of a cell down to molecular level including major biological processes. Generation,

assembly, analysis and applications of biological data are discussed in the later sections.

2.1 Cell

The cell is the structural and functional unit of all known living organisms. It is the smallest

unit of an organism that is classified as living, and is sometimes called the building block of life.

Some organisms, such as bacteria, are unicellular (consist of a single cell). Other organisms,

such as humans, are multicellular. Humans have an estimated 100 trillion or 1014 cells. Cells

range in size from one millimeter down to one micrometer. A typical cell size is 10 m and

typical cell mass is 1 nanogram. Vital functions of an organism occur within cells, and all cells

contain the hereditary information necessary for regulating cell functions and for transmitting

information to the next generation of cells.

Cells are highly organized and complicated assembly of large polymeric molecules with

specific compartments called organelles. The most important organelle is the nucleus, which

houses most of the cellular DNA, the hereditary material of living organisms. Cells are of

7
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two types - prokaryotic cells (e.g. bacteria, amoebae), which lack a defined nucleus and with

a simplified internal organization, and eukaryotic cells (body cells of human, animals), which

have a more complicated organization including a defined nucleus.

In addition to the nucleus, there are several other organelles in typical eukaryotic cells:

the mitochondria, where the cell’s energy metabolism is carried out; the rough and smooth

endoplasmic reticula, a membranous network in which glycoproteins and lipids are synthesized;

Golgi vesicles, which transfers membrane constituents to appropriate places in the cell; and

peroxisome, in which fatty acids and amino acids undergo degradation. Animal cells, but not

plant cells, contain lysosomes, which degrade unnecessary materials taken in by the cell. Plant

cells have chloroplasts, where photosynthesis takes place.

2.2 Genome Organization

2.2.1 DNA

DNA (deoxyribonucleic acid) is the master molecule that contains the genetic instructions used

in the development and functioning of all living organisms. DNA contains the instructions

needed to construct other components of cells, such as proteins and RNA molecules. The main

role of DNA molecules is the long-term storage of genetic information, which is used as a set

of blueprints to transfer genetic information from one generation to the next.

DNA is a long polymer made from repeating units called nucleotides. The three dimensional

structure of DNA, consists of two long helical strands coiled around a common axis forming a

double helix. The DNA double helix is stabilized by hydrogen bonds between the bases attached

to the two strands. The four bases found in DNA are adenine (A), cytosine (C), guanine (G)

and thymine (T). Each strand of DNA is composed of continually varying sequence of just these

four different types of bases called nucleotides.

The DNA segments that carry this genetic information are called genes, but other DNA

sequences have structural purposes, or are involved in regulating the use of this genetic in-

formation. That means genes are simply portion of nucleotide sequence residing in the DNA



2.2. Genome Organization 9

molecule that codes polypeptides or proteins- the main constituents of cells. DNA also contains

instructions in form of nucleotide sequence to direct when, which proteins are to be made and

in what quantities.

The DNA in the nucleus of a eukaryotic cell is organized among 1 to more than 50 long

linear, compact structures. They are called chromosomes. All cells of an organism contain

chromosomes of same size and number but they vary among different types of organisms. Each

chromosome comprises of a single DNA molecule associated various DNA binding proteins.

The total DNA content in the chromosomes of an organism is referred as its genome.

2.2.2 Genome

The genome of an organism is its whole hereditary information and is encoded in the DNA. This

includes both the genes and the non-coding sequences of the DNA. More precisely, the genome

of an organism is a complete DNA sequence of one set of chromosomes. The term genome can

be applied specifically to mean the complete set of nuclear DNA (i.e., the ”nuclear genome”) but

can also be applied to organelles that contain their own DNA, as with the mitochondrial genome

or the chloroplast genome. When people say that the genome of a species has been ”sequenced,”

typically they are referring to a determination of the sequences of one set of autosomes and

one of each type of sex chromosome, which together represent both of the possible sexes. The

study of the global properties of genomes of related organisms is usually referred to as genomics,

which distinguishes it from genetics which generally studies the properties of single genes or

groups of genes.

Both the number of base pairs and the number of genes vary widely from one species to

another, and there is little connection between the two. At present, the highest known number

of genes is around 60,000, for the protozoan causing trichomoniasis, almost three times as many

as humans have.

The Human Genome is Like a Book: the book is over one billion words long. The book

is bound in 5,000 300 page volumes. The book fits into a cell nucleus the size of a pinpoint.

A copy of the book (all 5000 volumes) is contained in every cell (except red blood cells) as a
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strand of DNA over two miles in length.

2.2.3 Genome Expression

DNA encodes all of the RNA (ribonucleic acid) and protein molecules of the cells of an organ-

ism. Proteins are the most abundant and functionally versatile of the cellular macromolecules.

Proteins are polymers formed from only 20 different monomers, the amino acids. Many pro-

teins within cells are enzymes, which accelerate (catalyze) biochemical reactions. Proteins also

direct their own synthesis and that of other macromolecules, maintain internal cell rigidity, and

transport small molecules and ions across membranes.

Protein synthesis from genes does not occur directly. RNA acts as an intermediary molecule.

Firstly, a portion of DNA sequence of the large DNA molecule in a chromosome is copied into

RNA. The process is called transcription. These RNA copies of segments of the DNA works

as templates to direct the synthesis of the protein. This process is called translation as genetic

information stored in the form of nucleotide sequence is decoded in the form of amino acid

sequence in proteins. DNA can undergo replication (synthesis of new DNA) also. Therefore

genetic information in cells owes from DNA to RNA to protein. This fundamental principle

genome expression is termed as the central dogma of molecular biology. Genome expression is

under fine regulation at various levels.

2.3 Generation of Genomic Data

Bioinformatics primarily deals with a huge range of genomic data gathered from different bi-

ological experiment. Computational biology studies the data and derives knowledge from it.

Thus generation of genomic data is of prime importance. This section briefly discuss about few

effective ways for generation of genomic data.
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2.3.1 DNA Sequencing

DNA sequencing is the laboratory technique by which chemical code of the genome is deci-

phered. DNA sequencing determines the exact order of chemical building blocks, nucleotides

(abbreviated A, T, C, and G) that make up the DNA. First, chromosomes are broken into much

shorter pieces. After sequencing of the short sequences (in blocks of about 500 bases each, called

the read length) they are assembled into long continuous stretches that are analyzed for errors,

gene-coding regions, and other characteristics.

The DNA sequence acts as a blueprint, determining what species of organism is produced,

and within a species, the DNA sequence of each individual is unique. The DNA sequence that

makes up a genome may include coding DNA (gene) and also non-coding DNA. Non-coding

DNA does not encode a protein but may regulate where and when genes and proteins are active.

Advances in molecular biology, genomics, and robotics have resulted in automatic sequencing

of DNA. Today, the DNA sequence of an entire microbial genome can be determined in just

a few weeks rather than several years as in the past. The resulting DNA sequence maps are

being used by 21st century scientists to explore biology phenomena.

2.3.2 Haplotype Reconstruction and Inference

A haplotype, is simply the genetic constitution of an individual chromosome. It also refers

to a set of single nucleotide polymorphisms (SNPs) found to be statistically associated on a

single chromatid (one-half of a replicated chromosome). Such information is most valuable to

investigate the genetics behind common diseases.

Haplotypes may be used to compare different populations. Haplotype diversity refers to the

uniqueness of a particular haplotype in a given population. Haplogroups are large groups of

haplotypes that define genetic populations and are often geographically oriented.

2.3.3 Genome Annotation

Genome annotation is the process of marking the genes and other biological features in a DNA

sequence. In its earliest days, gene finding was based on painstaking experimentation on living
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cells and organisms. Today, with comprehensive genome sequence and powerful computational

resources at the disposal of the research community, gene finding has been redefined as a largely

computational problem.

The target genome is searched for sequences that are similar to extrinsic evidence in the

form of the known sequence of a messenger RNA (mRNA) or protein product. Given an mRNA

sequence, it is trivial to derive a unique genomic DNA sequence from which it had to have been

transcribed. Given a protein sequence, a family of possible coding DNA sequences can be

derived by reverse translation of the genetic code. Once candidate DNA sequences have been

determined, it is a relatively straightforward algorithmic problem to efficiently search a target

genome for matches, complete or partial, and exact or inexact.

2.3.4 Analysis of gene expression

The expression of many genes can be determined by measuring mRNA levels with multiple tech-

niques including microarrays, expressed cDNA sequence tag (EST) sequencing, serial analysis

of gene expression (SAGE) tag sequencing, massively parallel signature sequencing (MPSS), or

various applications of multiplexed in-situ hybridization. All of these techniques are extremely

noise-prone and/or subject to bias in the biological measurement, and a major research area

in computational biology involves developing statistical tools to separate signal from noise in

high-throughput gene expression studies. Such studies are often used to determine the genes

implicated in a disorder: one might compare microarray data from cancerous epithelial cells

to data from non-cancerous cells to determine the transcripts that are up-regulated and down-

regulated in a particular population of cancer cells.

2.4 Genomic Data Analysis and Applications

Bioinformatics creates the tools to store, manage, analyze, compare genomic data. Vast

amounts of sequence are now stored in organized computer databases. The genome sequence

has been interpreted using computational tools combined with biological knowledge. Computer
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software associated with the database is being used for easier data retrieval and data analysis

process. Sequence analysis tools can also translate the DNA sequence into protein sequence and

can provide information on the predicted physical properties of the protein such as molecular

weight. Sequence comparisons also can be used to categorize groups of related gene or sequences

into families. Sequences in the same family suggest that the genes or proteins perform similar

functions. Another use for sequence comparisons is studying the relatedness and evolution of

different genes or organisms.

Here are some research areas where important relationships and predictions are being gen-

erated by genomic data analysis with the help of bioinformatics tools:

• Gene number, exact locations, and functions

• Gene regulation

• DNA sequence organization

• Chromosomal structure and organization

• Non-coding DNA types, amount, distribution, information content, and functions

• Coordination of gene expression, protein synthesis, and post-translational events

• Predicted vs experimentally determined gene function

• Evolutionary conservation among organisms

• Correlation of SNPs (single-base DNA variations among individuals) with health and

disease

• Disease-susceptibility prediction based on gene sequence variation

• Genes involved in complex traits and multi-gene diseases

Some uses of genomic data are discussed in this section which will be elaborated throughout

this thesis.

2.4.1 Phylogeny

Phylogeny is the description of biological relationships based on classification according to

similarity of one or more sets of characters or on a model of evolutionary processes. Phylogenetic

relationship based different characters are consistent and support one another. Phylogeny is
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usually expressed as trees called phylogenetic trees.

The goals of phylogeny is to work out the relationships among species, populations, indi-

viduals or genes(generally referred as taxa). Relationship is taken as assignment of a scheme of

descendants of a common ancestor.The results are usually presented as an evolutionary tree.

A phylogenetic tree is a two dimensional graph composed of nodes representing the taxa

and branches representing the relationships among the taxa. A tree is a connected graph in

which there is exactly one path (consecutive set of edges beginning at one point and ending at

the other) between every two points. A particular node may be selected as a root. Abstract

trees may be rooted or unrooted. Unrooted tree displays the topology of relationship. But it

does not show the pattern of the descent. Rooted trees are directed graphs in which each edge

is a one-way street and the ancestor-descendant relationship implies the direction of each edge.

If every node of rooted trees has two descendants, they are called Binary trees. Numbers are

often assigned to the edges of a graph to signify a distance between the nodes connected by

the edges. Thus the sizes of the edges can be drawn proportional to the assigned lengths. The

length of a path through the graph is the sum of the edge lengths.

In phylogenetic trees edge length signify either some measure of the dissimilarity between

two species or the period since their separation. There are two approaches for derivation of

phylogenetic trees

• Phenetic approach proceeds by measuring a set of distances between species to generate

a tree by hierarchical clustering procedure.

• Cladistic approach considers possible pathways of evolution, inferring the characteristics

of the ancestor at each node.

There are two types of data used for building phylogenetic trees:

• Distance-based: A matrix of distances between the species is used as input(e.g., the

alignment score between them or the fraction of residues they agree on).

• Character-based: Each character (e.g., a base in a specific position in the DNA) is exam-

ined separately.
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2.4.2 Study of Single Nucleotide Polymorphism

Single nucleotide polymorphisms or SNPs (pronounced ”snips”) are DNA sequence variations

of single nucleotide (A,T,C,or G) in the genome sequence. For example, a change in the DNA

sequence AATTAC to ATTTAC is a SNP. When a variation occurs in at least 1% of the

population, it is considered as an SNP. SNPs are found in both coding (gene) and non-coding

regions of the genome. Most SNPs occur outside of “coding sequences”. SNPs found within a

coding sequence are of particular interest to researchers because they are more likely to alter

the biological function of a protein.

SNPs, make up about 90% of all human genome sequence variation. Two of every three

SNPs are due to the replacement of cytosine (C) with thymine (T). These variations in DNA

sequence are believed to be associated with humans respond to disease; environmental insults

such as bacteria, viruses, chemicals; and therapies. Thus SNPs has become of great value for

biomedical research and for developing pharmaceutical products or medical diagnostics. SNPs

are easier to follow in population studies because they are evolutionarily stable - not changing

much from generation to generation.

2.4.3 SNPs and Disease Diagnosis

Each person has a unique SNP pattern. In most cases, SNPs do not cause disease, they only

serve as biological markers for pinpointing a disease on the human genome map, because they

are usually located near a gene found to be associated with a certain disease. Thus SNPs

help to determine a person’s genetic predisposition to a particular disease based on genes and

hereditary factors. Researchers may also identify relevant genes associated with a disease by

studying stretches of DNA that have been found to harbor a SNP associated with a disease

trait. Thus SNPs will also allow researchers a better evaluation about the impact of non-genetic

factors like behavior, diet, lifestyle, and physical activities diseases.

To create a genetic test to screen a disease in which the disease-causing gene has already

been identified, scientists may compare SNP patterns of a group of individuals affected by the

disease with that of individuals unaffected by the disease. This association study can indicate
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which pattern is most likely associated with the disease-causing gene. Then SNP profiles that

are characteristic of a variety of diseases can be established and a physician would easily screen

individuals for susceptibility to a disease just by analyzing their DNA samples for specific SNP

patterns. SNP maps may help them identify the multiple genes associated with such complex

diseases as cancer, diabetes and mental disorder, etc.

2.4.4 SNPs and Personalized Drug Prediction

A treatment proved effective in one patient for a particular disease may be found ineffective

in others. SNPs are also believed to be useful in helping to determine and understand why

individuals differ in their abilities to absorb or clear certain drugs, as well as to determine why

an individual may experience an adverse side effect to a particular drug while other may not

have any. The most appropriate drug for an individual could be determined by analyzing a

patient’s SNP pattern. When a medicine works well for a group of people, researchers tries

to find out the DNA markers (SNPs) that are alike for these people. Scientists could identify

which medicines are best for any one person by using these markers. For example, when a

person is in need of medicine, doctors will compare the person’s SNP pattern with several SNP

patterns of different groups of individuals having same disease and will prescribe individualized

therapies specific to a patient’s needs. The prediction of the appropriate treatment to the right

person is referred to as “personalized drug prediction”. Personalized medicine would allow

pharmaceutical companies to bring many more drugs to market and allow doctors to suggest a

drug that will be most effective for that individual patient.

Therefore, the recent discovery of SNPs are on the way of a revolution in the process of

disease detection and the practice of preventative and curative medicine

2.5 Summary

This chapter is written as a suitable starting point for the readers who lack necessary biological

background to read the rest of the thesis. The very basics of bioinformatics is actually deeply
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rooted in the concepts and discoveries of biologists. That’s why, as a student of computer

science, to study of bioinformatics is a difficult job and requires much time and effort to grasp

the ideas inherent in this beautiful research area.



Chapter 3

Haplotyping

One of the biggest achievements in the quest for mystery of life is the complete sequencing of

human genome. The Human Genome Project successfully discovered the fact that humans are

almost 99% identical at the DNA level. Therefore what makes us different is very small region

of the whole genome. The smallest possible variation in DNA sequence is the Single Nucleotide

Polymorphism abbreviated as SNP and pronounced as “snip”. It is also the prominent kind of

variation in humans. Let us describe SNP more elaborately because haplotyping is the process

of locating and determining SNPs.

An SNP is a specific nucleotide, placed inside a DNA molecule which is otherwise identical

for all of us, whose value varies, in a statistically significant way, within a population. For a

chromosome all the sites where SNP occurs have been well identified in the human genome

project. The base at an SNP site is called allele. The possible variations in a particular SNP

site over the entire population are most of the times between two alleles. Such SNP is called

bi-allelic. It is still to be explained the reason why bi-allelic SNPs are prominent than multi-

allelic SNPs which has three or more different bases. Snips are the most extensive research

topic in recent years for the computational biologists.

18
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3.1 Haplotype

Several computational problems related to SNPs have been devised in few years. One of the

popular problems is Haplotyping which deals with generating haplotypes from genomic se-

quence data. Diploid organisms are organized in pairs of chromosomes. A diploid organism

has one copy of a specific chromosome inherited from father and another copy of that same

chromosome inherited from mother. For each SNP site one can be homozygous (same allele

on both chromosomes) or heterozygous (different alleles). The values of a set of SNPs on a

particular chromosome copy define a haplotype. An example is shown in Table. 3.1. Two copies

of the same chromosome of an individual are aligned and the SNP sites are shown by capital

letters. The individual is heterozygous at SNPs 1 and 3 and homozygous at SNPs 2 and 4.

The haplotypes are TGGT and AGCT.

paternal copy: atcatcTcaagtGgaattGctcTctaa

maternal copy: atcatcAcaagtGgaattCctcTctaa

Haplotype 1: T G G T

Haplotype 2: A G C T

Table 3.1: A chromosome and two haplotypes assembled from it

Two major category of problems related to haplotyping are

• Individual Haplotyping – The Haplotype Assembly Problem

• Population Haplotyping – The Haplotype Inference Problem

The following sections elaborate the idea of haplotyping problems in details.

3.2 Individual Haplotyping

Haplotyping an individual consists of determining a pair of haplotypes, one for each copy of

a given chromosome. This pair of haplotypes completely define the SNP fingerprints of an

individual for a specific chromosome. Given a sequence of bases of a specific chromosome, we
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just need to check all the SNP sites to generate the haplotypes. But, the situation is a bit

complicated for generating haplotypes from sequencing data. Sequencing data for a genome

does not contain the total sequence of bases for a specific chromosome, rather it provides

sequences of a set of fragments of the whole genome. Hence the actual problem of individual

haplotyping is to find two haplotypes from the set of overlapping fragments of the both copies

of a chromosome where fragments may have error and to which copy of the chromosome a

fragment belongs is not determined. The very general formulation of the problem is given

below [BILR05].

“Given a set of fragments obtained by DNA sequencing from the two copies of a

chromosome, find the smallest amount of data to remove so that there exist two

haplotypes compatible with all the data remaining.”

Before describing some of the optimization problems of individual haplotyping, the mathe-

matical terminology is presented below.

3.2.1 Terminology

Let, S be the set of k bi-allelic SNP sites over which the haplotypes will be constructed. Let,

F be the set of m fragments produced from two copies of the chromosome. Each fragment

contains information of nonzero number of SNPs in S. Because the SNPs are bi-allelic, let the

two possible alleles for each SNP site be 0 and 1 where they can be any two elements of the

set {A, T,G,C}. Since all the nucleotides are same at the sites other than SNP sites, we can

remove these extraneous sites from all the fragments and consider the fragments as sequences

of SNP sites only. Thus each fragment f ∈ F is a string of symbols {0, 1,−} of length k where

‘−’ denotes an undetermined SNP named as hole. All the fragments can be arranged in an

m× k matrix M = {Mij}, i = 1, . . . ,m, j = 1, . . . k, where row i is a fragment of F and column

j is an SNP of S. This matrix is called SNP matrix. An example of an SNP matrix is given in

Table. 3.2.

The Consecutive sequence of ‘−’ that lies between two non-hole symbols is called a gap. A

gapless SNP matrix is the one that has no gap in any of the fragments. In the example, the



3.2. Individual Haplotyping 21

- - - -1101- - - - - - - - - - - -

- - - - -0001110101- - - - -

11010010011- - - - - - - - -

- - -10100- - -010- - - - - -

- - - - - - - - -10110101011

010111- - - - - - - - -01011

Table 3.2: An SNP matrix.

first, second and third rows have no gaps while the fourth and sixth rows both have one gap.

Two fragments f and g are said to have conflict, if there exist an SNP position s where

two fragments disagree, i.e. M [f, s] = 0 and M [g, s] = 1 or vice versa. If two fragments do

not have conflict on any SNP, they are said to agree. Some pairs of fragments are given in

Table. 3.3 to illustrate the idea of conflict and agree.

relation pair of fragments

conflict 0111010101100

- - - -010001- --

agree 0111010101100

- - - -010101- --

agree 011101- - - - - --

- - - - - - -110001

conflict 010001- - - - - --

- - - - -00001- --

Table 3.3: Different relations between fragments

An SNP matrix is error-free if it can be partitioned into two classes of non-conflicting

fragments. For a specific SNP matrix there may be more than one such partitions. From

each non-conflicting partition of fragments, a haplotype can be constructed by just taking the

common allele of the non-conflicting fragments for a particular SNP site. Let, partition of rows
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in M are Ml and Mr where rows in each set are pairwise non-conflicting. From these two

partitions, the construction of haplotypes Hl and Hr by combining the rows can be described

as

Hij =


1 if Mij = 1 for at least one row

0 if Mij = 0 for at least one row

− if Mij = − for all fragments

(3.1)

where i ∈ {l, r} and j = 1, 2, . . . , n. Although actual haplotypes can not have any hole, haplo-

type assembly problems can introduce holes in the haplotypes if there is no allelic information

in the fragments of the partition. Thus the general problem can now be redefined as to finding

an error-free matrix from a given SNP matrix through optimal changes.

The following sections deal with an approach of finding error-free matrix.

3.3 Minimum Error Correction : MEC
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Figure 3.1: Minimum fragment removal using fragment conflict graph

With the advent of sophisticated sequencing methods, errors in SNP matrices are getting

smaller. As a result, correcting these errors rather than removing a whole row or column is

more preferable approach. Erroneous SNP values can be corrected by just flipping it to the

other allele. Obviously it would have not been possible if it were a multi-allele (more than two

possible symbols in an SNP) SNP matrix. A good example of saving information by correcting
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the errors would be for the SNP matrix in Fig. 3.1. In that matrix fragment E has conflict with

fragment B just for the last SNP that is common to them. Thus flipping that SNP of fragment

E to 0 would result into an error-free matrix having the partition {A,C} and {B,D,E}. MEC

retains the information of the other four alleles of fragment E, while MFR would delete all the

five alleles from the matrix.

Problem : Minimum Error Correction – MEC

Input : An SNP matrix M .

Output : The smallest set of SNP alleles whose flipping makes M error-free.

MEC problem for gapless SNP matrix is NP-hard [CvIKT05]. Hence, MEC is more difficult

than the gapless MFR or MSR which have polynomial time algorithm. For 1-gap case MEC is

proved to be APX-Hard. It has been showed that haplotype assembly problem has reasonable

input size for practical exact algorithms [Hüf05]. An exact algorithm based on branch and

bound technique is available. It searches all possible pairs of haplotypes to find the solution

[WWLZ05]. Now, we present a heuristic algorithm to find the solution of a minimum error

correction problem.

3.4 A Heuristic Algorithm for MEC Problem

3.4.1 Terminologies and Definitions

Before describing the algorithm, let us redefine the terminologies. Let, M = {Mij}, i =

1, . . . ,m, j = 1, . . . k, is an SNP matrix of dimension m × k where Mij ∈ {0, 1,−}. There

are m fragments; each of which has either a fixed allele (i.e. {0, 1}) or a gap (i.e. ‘−’) in each

of its k SNP sites.

Conceptually, an SNP matrix M =< M1,M2, . . . ,Mm > can be viewed as an ordered set

of m fragments where a fragment Mi =< Mi1,Mi2, . . . ,Mik > is an ordered set of k alleles or

holes (see Fig. 3.2(a)). A fragment Mi is called to cover the jth SNP if Mij ∈ {0, 1} and called

to skip the jth SNP if Mij = −. Let, Ms and Mt be two fragments. The distance between

two fragments, D(Ms,Mt), is defined as the number of SNPs that are covered by both of the



Chapter 3. Haplotyping 24

fragments and have different alleles. For example in Fig. 3.2(a) the D(M3,M2) = 4. Hence,

D(Ms,Mt) =
k∑

j=1

d(Msj,Mtj) (3.2)

where d(x, y) is defined as

d(x, y) =


1 if x ̸= − and y ̸= − and x ̸= y

0 Otherwise
(3.3)

In Table. 3.2, the distance between second and third fragment is 2, as they differ in the

seventh and ninth SNP sites (columns).
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Figure 3.2: SNP matrix and its partition

Two fragments Ms and Mt are said to be conflicting if D(Ms,Mt) > 0. Let P (C1, C2) be a

partition of M , where C1 and C2 are two sets of fragments taken from M so that C1
∪
C2 = M

and C1
∩
C2 = ϕ [WWLZ05]. In Fig. 3.2(b), an arbitrary partition, corresponding to the SNP

matrix of Fig. 3.2(a), is shown. Then an SNP matrix M is an error-free matrix if and only if

there exists a partition P (C1, C2) of M such that for any two fragments x, y ∈ Ci, i ∈ {1, 2}, x

and y are non-conflicting, i.e., D(x, y) = 0. Such a partition is called an error-free partition.The

partition in the Fig. 3.2(b) is not error free since D(M1,M2) > 0 in C1 and D(M5,M6) > 0 in

C2 . A haplotype Hi, i ∈ {1, 2} is constructed from its corresponding fragment class Ci using
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the formula

Hij =


1 if at least one fragment in Ci has a 1 in jth SNP;

0 if at least one fragment in Ci has a 0 in jth SNP;

− if all the fragments in Ci skips jth SNP.

(3.4)

where Ci is called the defining class of haplotype Hi and Hij, i ∈ {1, 2} and j = 1, . . . k,

denotes the jth element of haplotype Hi. Thus haplotype construction from an SNP matrix

may introduce holes in the haplotypes if there is no allelic information in the fragments of the

partition.

Now we take a focus to the general minimum error correction problem. If a matrix M

is not error-free, there will be no error-free partition P . For such M there will be at least

one conflicting pair of fragments in each of the classes of all possible partitions. That’s why

it is impossible to construct a haplotype that is non-conflicting with all the fragments in its

defining class of fragments. If we are given a partition P (C1, C2) and two haplotypes H1 and

H2 constructed from P then the number of errors E(P ) that must be corrected can be readily

calculated by the following formula

E(P ) =
2∑

i=1

∑
f∈Ci

D(f,Hi) (3.5)

The MEC problem asks to find a partition P that minimizes the error function E(P ) over

all such partitions of an SNP matrix M .

3.4.2 Algorithm - HMEC

Now, to minimize the E(P ), we need to search all possible partitions of a matrix M . This

would certainly require running time exponential to the number of fragments in M . But such

a search is not possible because we don’t have the real haplotypes to calculate E(P ). Hence,

we have to approximate E(P ) by constructing two haplotypes from the given partition P .

For best approximation we should construct haplotypes which are minimum conflicting with

the fragments of their corresponding collections. Therefore, for each SNP site, the haplotype

Hi should take the allele that is present in majority of the fragments in Ci. In case of ties, 0 is
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favored because it is the more common than 1. In Fig. 3.2(c) the two haplotypes H1 and H2

are shown for the partition P in Fig. 3.2(b) which are constructed in this method. To define

this construction more mathematically, let N0
j (Ci) is the number of fragments in a collection

Ci that have 0 in jth SNP. Similarly, N1
j (Ci) defines the number of 1s. Thus to minimize the

number of errors E(P ) for a specific partition P , the haplotype should be constructed following

the rule

Hij =


1 if N1

j (Ci) > N0
j (Ci);

0 if N0
j (Ci) >= N1

j (Ci) and N0
j (Ci) ̸= 0;

− if N1
j (Ci) = N0

j (Ci) = 0,

(3.6)

where i ∈ {1, 2} and j = 1, 2, . . . , k.

To find the best partition we will use a local search heuristic. The algorithm iteratively

searches a better partition with respect to the current one and chooses it to move to. Because

the algorithm searches from within a small set of partitions, the chosen partition may not

lead to the optimum solution and the algorithm has a chance to fall into the local optimum

solution. The algorithm is inspired from the famous Fiduccia and Mattheyses (FM) algorithm

for bipartitioning a hypergraph minimizing the cut size.

This algorithm starts with an arbitrary partition as for example P (M,ϕ) and iteratively

searches a better partition. In each iteration the algorithm performs a sequence of transfer of

distinct fragments from their present collection to the other one so that the partition becomes

less erroneous. It should be noted that, a fragment’s transfer of collection can both increase or

decrease the error function E(P ).

Let, the partition before transferring a fragment f is Pp and the partition resulted is Pn. We

define the gain of the transfer as Gain(f) = E(Pp)−E(Pn). Let, F =< fi >, i = {1, 2, . . . ,m}

is an ordering of all the fragments in a partition P in such a way that fragment fi will precede

fragment fj if all the fragments preceding fi have been transferred to form an intermediate

partition Pi and Gain(fi) >= Gain(fj) over Pi. Thus the first intermediate partition P1 is the

current partition Pc of the ongoing iteration. We also define the cumulative gain of a fragment

ordering F up to its nth fragment as CGain(F, n) =
∑n

j=0Gain(fj). Note that, all the gains
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used to compute the cumulative gain are calculated over different intermediate partitions. The

maximum cumulative gain, MCGain(F ) is defined as

MCGain(F ) = max
1 ≤ i ≤ m

CGain(F, i)

Now, in each iteration the algorithm finds the ordering Fc of current partition Pc and

transfers only those fragments of Fc that can achieve the MCGain(Fc). The fragment that is

the last to be transferred is referred as fmax. Thus, the algorithm iterates from one partition to

another reducing the error function. Since our algorithm is local search algorithm, it continues

whenever MCGain(Fc) > 0 and stops as soon as MCGain(Fc) ≤ 0.

3.4.3 Implementation and Complexity

There are several issues to discuss about the above described algorithms. We will discuss the

data structure for each such issue.

To find Fc in each iteration the algorithm repeatedly transfers the fragment that is not

transferred previously in this iteration and has maximum gain over all such fragments. To

accomplish this we use a locking mechanism. At the beginning of each iteration all the fragments

are set free. The free fragment with maximum gain is found out and tentatively transferred

to the other collection. After the transfer the fragment is locked at the new collection. This

tentative transfer creates the first intermediate partition P1. The algorithm then finds the next

free fragment with maximum gain in P1 and transfer and lock that fragment to create the P2.

Thus, free fragments are transferred until all the fragments are locked and the order of the

transfer (Fc) is stored in the log table along with the cumulative gains (CGain). MCGain is

the maximum CGain and fmax is the fragment corresponding to MCGain in the log table.

Although after finishing all such tentative transfers Pc has been changed to an undefined

partition, the algorithm checks the log to find the MCGain(Fc) and fmax and rollback the

transfer of all the fragments that were transferred after fmax. When the rollback completes the

Pc becomes ready for the next iteration.

While tentatively transferring a free fragment, the algorithm needs to find the fragment

with maximum gain among the free fragments (which are not yet transferred). This requires
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Figure 3.3: An example calculation of Gain measure

calculating gains for each of them. To calculate the Gain(f) = E(Pp)−E(Pn) for a fragment we

need to calculate two error values of two different partitions; the present intermediate partition

and the next partition which will be resulted if f is transferred. Each of these error functions

requires calculation of two new haplotypes from their corresponding collections (see Fig. 3.3).

Although E(Pp) and the haplotypes of Pp can be found from the previous transfer, calculation

of E(Pn) requires construction of haplotypes of Pn. Since, the difference between Pp and Pn

is only one transfer, we can introduce differential calculation of haplotypes Hnj, j ∈ {1, 2} of

next partition from the haplotypes of Hpi, i ∈ {1, 2} of present partition. For this purpose, the

algorithm stores N1
j (Cpi) and N0

j (Cpi) values of the present partition. After a transfer these

values will either be incremented or decremented by 1 or remain the same. Hence, it is now

possible to construct Hnj, j ∈ {1, 2} in O(k) time. To compute E(Pn) from the haplotypes

requires O(mk) time. Therefore, running time to compute the E(Pn) as well as to compute

Gain(f) is O(mk + k).

For each intermediate partition Pi, i = 1, . . . , n we need to compute Gain measures for

m − i unlocked fragments to find the maximum one. The transfer of this fragments require

updating of N1
j (Ci) and N0

j (Ci), i ∈ {1, 2} and j = 1, 2, . . . , k. So, it also needs O(k) time to

run. Finally, there will be m such transfer in each iteration. Thus each iteration will require

O(m(m(mk + k) + k)) ∼ O(m3k) running time.
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3.4.4 Approximation to Improve Performance

For large SNP matrix O(m3k) running time is critical to the performance of the algorithm. We

can use an approximation in the calculation of the Gain(f) by using only the fragment f and

not using the m− 1 other fragments. The approximate gain should be

AppxGain(f) = D(Hp
i , f)−D(Hn

j , f) (3.7)

where Hpi is the haplotype of f ’s present collection Ci of partition Pp and Hnj is the haplotype

of f ’s next collection Cj of partition Pn. This function ignores the effect of fragments other

than f on Gain(f) but reduces the run time of calculating gain to O(k). The total run time of

each iteration will be O(m2k)

3.4.5 A Simulated Example

In Fig. 3.4 we present an example iteration of HMEC. We consider that the current partition

Pc = P1 is the partition given in Fig. 3.2(b) for the matrix M . All the intermediate partitions

Pi, i ∈ {1, . . . , 7} are shown sequentially and the gains of each fragment over the intermediate

partitions are shown on the right of each partition. The free fragment with maximum gain is

marked in each intermediate partition. For example, the maximum gaining fragment on P2 is

fragment 6 with gain 2. After each transfer the transferred fragment is locked by a circle. Here,

the ordering Fc of the fragments is < 2, 6, 5, 1, 4, 3 > which is also the order of locking of the

fragments. In the log this ordering will be stored along with the CGains (see Fig. 3.5). All the

tentative transfers after fmax have to be rolled back so that the P2 becomes the next Pc.

3.4.6 Performance Evaluation

We ran our program on real Biological data as well as simulation data to demonstrate the per-

formance of our program. We also compared our program with most recent Genetic algorithm.
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Algorithm HMEC(M)

1: Pc = P (M,ϕ)

2: FREE LOCKS()

3: CLEAR LOG()

4: repeat always

5: while there is an unlocked fragment in Pc do

begin

6: find a free fragment f so that Gain(f) is maximum

7: transfer f to the other collection

8: update the haplotypes after the transfer

9: LOCK(f)

10: LOG RECORD(f ,Gain(f))

end

11: FREE LOCKS()

12: check the log and find MCGain(Fc) and fmax

13: if MCGain(Fc) > 0

begin

14: set new Pc by rolling back the transfers

that occurred after the transfer of fmax

15: calculate haplotypes of Pc

16: CLEAR LOG()

17: continue the loop

end

18: else

begin

19: terminate the algorithm and output current haplotypes

end

end repeat

Table 3.4: The pseudocode for the HMEC algorithm



3.4. A Heuristic Algorithm for MEC Problem 31

1
2
3

4
5
6

Gain(1)=0
Gain(2)=2
Gain(3)=2
Gain(4)=1
Gain(5)=1
Gain(6)=1

1

3

2
4
5
6

1
3
6

2
4
5

Gain(1)=−1
Gain(3)=−2
Gain(4)=−1
Gain(5)=0

1

6

3 4

5
2

Gain(1)=−1
Gain(3)=−3

1

2

3

5
4

6

5

6

4

2

3

1

1

6
5
3

2

4

P1

P2

P3 P5

P6

P7

P4

Gain(1)=−1
Gain(3)=−2
Gain(4)=−2
Gain(5)=1
Gain(6)=2

Gain(1)=−2
Gain(3)=−3
Gain(4)=−1

Gain(3)=−2

locked fragment

Figure 3.4: An example iteration of HMEC
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Figure 3.5: An example log table

3.4.7 Testing Terminology

Now we proceed to our testing terminologies. We first sample the original haplotype pair into

many fragments with certain coverage and error. Each fragment works as distinct sample of

the same specimen. Here coverage indicates how many columns of SNP matrix have been

sampled out. The remaining slots are gap. Then we introduce some specific amount of error

into these samples. The number of fragments, coverage and error rate are user given input

for our simulated sequencing technique. The simulation was controlled in several ways. We

varied the error rate while no of fragments and coverage were kept constant. Again coverage

was varied while no of fragments and error rate were kept constant. Every time we compared

our result with that of the Genetic algorithm.

3.4.8 Result

We tested our algorithm and the Genetic algorithm thoroughly with data of various coverage

and error rate. The reconstruction rate of our algorithm is very much comparable to that of

the genetic algorithm and many of the times it is better. The reconstruction capability of our

algorithm approaches better with the increase of coverage value. Fig. 3.6 illustrates the nature

of two algorithm for various coverage value. The sharp slope of the corresponding graph of

our algorithm is the clear testimony of superiority for our algorithm. We also simulate the

algorithms for different error rate keeping the coverage value constant. Table depicts that for
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advanced sampling technique, that is for low error rate, the performance of our algorithm is

simply tremendous. And for higher error rate it is also very much remarkable and comparable

to that of the Genetic algorithm. Our algorithm simply outperform the genetic algorithm, when

time needed to reconstruct the haplotype pair is the main concern. The table illustrates how

fast our algorithm is compared to the genetic algorithm. For an SNP matrix of 964 columns

it takes only 0.04 seconds whereas Genetic algorithm takes 111 seconds when programs are

executed on a Pentium-III processor.
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Figure 3.6: Reconstruction rate vs Coverage value.

Another Salient feature of our algorithm is it’s deterministic nature. In every execution,

our algorithm generates same result for same data whereas Genetic algorithm, which is fully

random in nature, generates different result in different execution. We have observed standard

deviation up to 11 for Genetic algorithm whereas that of our algorithm is obviously 0.
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Table 3.5: Demonstration of reconstruction rate for different error rate.

Error rate HMEC Genetic

(percent) (percent) (percent)

2 100 86.453

5 99.37 91.202

7 98.73 91.264

15 84.81 86.708

20 84.81 88.164

25 93.67 82.406

30 79.75 88.355

35 92.40 81.898

40 70.89 78.482

50 85.44 78.986

Table 3.6: Demonstration of execution time.

Length of haplotype HMEC Genetic

(sec) (sec)

79 0.01 9.483

158 0.01 17.806

316 0.01 35.101

632 0.03 71.142

862 0.04 100.064

964 0.04 111.119
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Pairwise Compatibility Graphs
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Chapter 4

Pairwise Compatibility Graphs

One of the most widely studied areas of biology is phylogeny. It is description of biological

relationships among different species. A statement of phylogeny among objects is based on the

notion of common ancestry. The basic principle of phylogeny is that the origin of similarity

is common ancestry. Based on that principle phylogeny tries to determine common ancestral

relations. This relationships are easily expressed as a tree known as phylogenetic tree. Pairwise

compatibility graphs are derived from phylogenetic trees. This is an alternative way of viewing

evolutionary relationships.

Phylogeny is the description of biological relationships among different species. A statement

of phylogeny among objects is based on the notion of common ancestry. The basic principle of

phylogeny is that the origin of similarity is common ancestry. Based on that principle phylogeny

tries to determine common ancestral relations. This relationships are easily expressed as a tree

known as phylogenetic tree. Pairwise compatibility graphs are derived from phylogenetic trees.

This is an alternative way of viewing evolutionary relationships. Dealing with a sampling

problem in a phylogenetic tree Kearney et al. introduced the concept of pairwise compatibility

graphs [KMP03].

In this chapter we give the definition of pairwise compatibility graph, their applications,

description of previous works and our results.

36
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4.1 Problem Definition

Let T be an edge weighted tree and G = (V,E) be a graph such that, each vertex of G

correspond to a leaf of T and an edge (u, v) ∈ E if and only if distance between the two leaves

of T corresponding to u and v is within a given limit. We call G a pairwise compatibility

graph of T . Fig. 4.1(a) depicts an edge-weighted tree T and Fig. 4.1(b) depicts a pairwise

compatibility graph G of T , where dmin = 5 and dmax = 6. Here, G has the edge (a, b) since

the distance between the leaves corresponding to a and b is 5 in T , but G does not contain the

edge (a, d) since the distance between the leaves corresponding to a and d in T is 8 which is

greater than dmax. All the remaining edges of G are drawn following the same rule.

(a) (b)

1

1

1

1

22 3

3
a

a

b

b

c

c

d
d

e

e

dmin = 4 dmax = 7

Figure 4.1: A weighted tree and its PCG.

Given a tree T and two limits, dmin and dmax, the construction of a PCG is an easy and

trivial problem. In our thesis we focus on the more complex counterpart of the problem which

is just the reverse of this, i.e., we are given with a graph G and we have to find out a tree T and

suitable limit of distance, dmin and dmax, such that G becomes the PCG of T . The problem

can be formalized as follows.

Problem : Pairwise Compatibility Tree construction

Input : A graph G = (V,E).

Output : A tree T and distance limit, dmin and dmax, such that each vertex of G corresponds

to a leaf of T and an edge (u, v) ∈ E if and only if distance between the two leaves of T
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corresponding to u and v is within the given limit.

The pairwise compatibility graph recognition problem asks to determine whether a given graph

is a pairwise compatibility graph or not.

4.2 Applications

Pairwise compatibility graphs have many applications in phylogenetic reconstruction which is

the reconstruction process of evolutionary relationship of a set of species from biological data

[JP04, Les02]. Usually phylogenetic relationship is expressed as a tree, known as phylogenetic

tree. Dealing with a sampling problem in a phylogenetic tree Kearney et al. introduced the

concept of pairwise compatibility graphs [KMP03]. They showed that “the clique problem”

is polynomially solvable for pairwise compatibility graphs if the pairwise compatibility tree

construction problem can be solved in polynomial time. The clique problem asks to deter-

mine a maximum set of pairwise adjacent vertices in a graph [CLRS01]. It is an well known

NP-complete problem that arises from many applications areas [PX94]. Thus, the pairwise com-

patibility graph recognition problem and the pairwise compatibility tree construction problem

have great potential from the view point of research and practitioner purpose.

4.3 Related Works

The problems associated with PCG have not yet been extensively studied. The smallest graph

class that encompasses all of the pairwise compatibility graphs is not known at all. It is known

that every graph of five vertices or less is a PCG [Phi02]. However, no result on the PCG

recognition problem for arbitrary large graphs is known. Not many well known classes of graphs

can be characterized as PCG yet. Kearney et al. showed that nearly every problem on PCGs

remained unsolved and posed some open problems [KMP03].

But most recently some structural properties of pairwise compatibility graphs have been

unveiled. Tozammel and Yanhaona in their undergraduate thesis determined the relationship

between pairwise compatibility graphs and chordal graphs [HY07]. They also proved that
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chordal graphs are pairwise compatibility graphs in a restricted case.They showed that number

of nontrivial component is not affected when value of dmax is set to certain large value and

only dmin is varied to construct different PCGs. They solved the open problem, whether any

(or every) cycle of length greater than five a pairwise compatibility graph, given by Kearney

et al. [KMP03]. They prove that, all chordless cycles and single chord cycles are pairwise

compatibility graphs. They gave a linear time algorithm for constructing trees from chordless

cycles and single chord cycles.

4.4 Scope of Part II

In this thesis we characterize some classes of graphs as PCG. We prove that every complete

graphs (Kn) and complete k-partite graphs are PCG. We also characterize two restricted

classes of bipartite graph as PCGs.

We also introduce the notion of ImproperPCG that allows some redundancies. We shall

describe these terms in Section. 7.1. We prove that every graph is an improper PCG. Here,

we also give an efficient algorithm to construct the pairwise compatibility tree for any planar

graph with all the faces triangulated allowing some redundancies.

The pairwise compatibility tree construction methods, that we describe in this thesis, are

very much generic and adoptable in other similar problems.

4.5 Summary

In this part of the thesis, we characterize some classes of graphs as pairwise compatibility graphs

and introduce the new notion of improperPCG. We give some efficient construction that can

generate pairwise compatibility tree in linear time.

The rest of the thesis is organized as follows. Chapter 5 is devoted for preliminaries. Chap-

ter 6 deals with our findings about PCG. In Chapter 7 we present our notion of improper

PCG and give some associated characterization and algorithms.
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Preliminaries

In this chapter we define some basic terminology of graph theory. Definitions and terminologies

not included in this chapter will be introduced as they are needed. We start, in Section 5.1,

by giving some definitions of standard graph-theoretical terms used throughout the remainder

of this thesis. In Section 5.1.2 we define various terms about trees. We devote Section 5.2 to

define terms related to planar graphs. We define pairwise compatibility graph in Section 5.3.

In Section 5.4 we define various terms about algorithms and complexity.

5.1 Basic Terminology

In this section we give definitions of some theoretical terms used throughout the remainder of

this thesis. Interested readers are referred to detailed texts of the literature [Wes00, NR04].

5.1.1 Graphs

A graph G is a structure (V,E) which consists of a finite set of vertices V and a finite set

of edges E; each edge is an unordered pair of vertices. The sets of vertices and edges of G

are denoted by V (G) and E(G) respectively. Fig. 5.1 depicts a graph G where each vertex in

V (G) = {v1, v2, . . . , v7} is drawn as a small dark circle and each edge in E(G) = {e1, e2, . . . , e10}

is drawn by a line segment. An edge connecting vertices u and v in V is denoted by (u, v). If

(u, v) ∈ E, then two vertices u and v are said to be adjacent in G; edge (u, v) is then said to

40
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Figure 5.1: A graph with seven vertices and ten edges.

be incident to vertices u and v. The degree of a vertex in G is the number of edges incident to

it in G.

A graph is called a simple graph if there is no “loop” or “multiple edges” between any two

vertices in G. Multiple edges join the same pair of vertices, while a loop joins a vertex itself. A

a b

c

d

e

Figure 5.2: A complete graph with five vertices.

complete graph is a simple graph whose vertices are pairwise adjacent; the complete graph with

n vertices is denoted by Kn. Figure 5.2 is an example of a complete graph with five vertices.

A graph G is k-partite if V (G) can be expressed as the union of k independent sets. (The

definition of independent set may be required). When k = 2 it is called a bipartite graph. A

complete k-partite graph is a simple graph such that two vertices are adjacent if and only if

they are in different partite sets. Figure 5.3 is an example of two partite (bipartite) graph.
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Figure 5.3: A complete bipartite graph.

5.1.2 Trees

A tree is a connected acyclic graph. Figure 5.4 is an example of a tree T . The vertices in a tree

are usually called nodes. The vertices of degree one in a tree are called leaves and the other

vertices are called internal vertices.

a

b c
d

e f g h

Figure 5.4: A Tree.

In Figure 5.4, the leaves are v5, v6, v7, v8, and the internal nodes are v1, v2, v3, v4. The weight

of an edge (u, v) is denoted by weight(u, v). The parent of a vertex v in a tree T denoted by

parent(v) is the immediate ancestor internal vertex in the tree. Length of the path between u

and v in T denoted by d(u, v) is the sum of the weights of the edges of the path.A caterpillar

is a tree in which a single path (the spine) is incident to or contains every edge. A star is a

tree where each of the leaves has a common parent which we call the base of the star. In this

paper every tree we considered is a weighted tree. We use the convention that, if an edge of a

tree has no number assigned to it then its default weight is 1.
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5.2 Planar Graphs

In this section we give some definitions related to planar graphs used in the remainder of the

thesis. For readers interested in planar graphs we refer to [NC88].

5.2.1 Planar graphs and plane graphs

A graph G is planar if it has a drawing in the Euclidean plane without edge crossings. A plane

graph is a planar graph with a fixed planar embedding. A planar graph may have exponential

number of planar embedding. Fig. 5.5 shows an example of plane graph. A plane graph G

divides the Euclidean plane into connected regions called faces. A planar graph where each of

the faces is a triangle is called triangular planar graph.

a

b c

d

e

G

Figure 5.5: A plane graph G.

5.2.2 Dual Graphs

For a plane graph G, we often construct another graph G∗ called the (geometric) dual. The

dual of a plane graph G = (V,E) is a graph G∗ = (V ∗, E∗), where for every face of G, there

is a corresponding vertex in V ∗ and the edges of G is defined as follows : if two faces X and

Y of G share a common edge e, there is an dual edge e∗ of e that joins the two vertices in V ∗

that represents the faces X and Y respectively. The construction is illustrated in Fig. 5.6; the

vertices v∗i are represented by small white circles, and the edges e∗ of G∗ by solid lines while

the edges of plane graph G is represented by dashed lines. G∗ is not necessarily a simple graph

even if G is simple. Clearly the dual G∗ of a plane graph G is also plane.
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Figure 5.6: A plane graph G and its dual graph G∗.

5.3 Pairwise Compatibility Graph

Let T be an edge weighted tree and G = (V,E) be a graph such that, each vertex of G

correspond to a leaf of T and an edge (u, v) ∈ E if and only if distance between the two leaves

of T corresponding to u and v is within a given limit. We call G a pairwise compatibility

graph of T . Fig. 4.1(a) depicts an edge-weighted tree T and Fig. 5.7(b) depicts a pairwise

compatibility graph G of T , where dmin = 5 and dmax = 6.
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Figure 5.7: A edge weighted tree T and its pairwise compatibility graph G.

In this paper we use the term PCG as the acronym of pairwise compatibility graph.
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5.4 Algorithms and Complexity

In this section we introduce some terminologies related to complexity of algorithms. We can

define algorithm as a precise method usable by a computer to solve a problem. An algorithm

must solve any instances of a problem and terminate after a finite number of operations. The

most widely accepted complexity measure for an algorithm are the running time. The running

time is the number of operations it performs before producing the final answer. The number

of operations required by an algorithm is not the same for all problem instances. Thus, we

consider all inputs of a given size together, and we define the complexity of the algorithm for

that input size to be the worst case behavior of the algorithm on any of these inputs. Then the

running time is a function of size n of the input.

5.4.1 The notation O(n)

In analyzing the complexity of an algorithm, we are often interested only in the ”asymptotic

behavior”, that is, the behavior of the algorithm when applied to very large inputs. To deal with

such a property of functions we shall use the following notations for asymptotic running time.

Let f(n) and g(n) are the functions from the positive integers to the positive real numbers, then

we write f(n) = O(g(n)) if there exists positive constants c1 and c2 such that f(n) ≤ c1g(n)+c2

for all n. Thus the running time of an algorithm may be bounded from above by phrasing like

”takes time O(n2)”.

5.4.2 Polynomial algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is

bounded by a polynomial of the size of a problem instance. Examples of such complexities are

O(n), O(nlogn), O(n100), etc. The remaining algorithms are usually referred as exponential or

non-polynomial. Example of such complexity are O(2n), O(n!), etc.

When the running time of an algorithm is bounded byO(n), we call it a linear time algorithm

or simply a linear algorithm.
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5.4.3 Constant Time

In computational complexity theory, constant time refers to the computation time of a problem

when the time needed to solve that problem doesn’t depend on the size of the data that is given

as input. Constant time is notated as O(1).

For example, accessing the elements in the array takes constant time as we can pick up an

element using the index and start working with it. However finding the minimum value in an

array is not a constant time operation as we need to scan each element of the array and then

decide the minimum of those elements. Hence it is a linear time operation and takes O(n) time.
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PCG Graphs

In this chapter we identify different well known classes of graphs as PCG.

Now we proceed to our findings. We present our findings through theorems in the rest of

the chapters.

6.1 PCG Graphs

Theorem 6.1.1 Every complete graph (Kn) is a PCG.

Let, Kn = (V,E) be a complete graph. We construct a star such that all the vertices of Kn

appear as the leaf of the star as illustrated in Fig. 6.1. The weight of each of the edge of the star

is one. Let, dmin = dmax = 2. Now we are done. The resulting tree is the pairwise compatibility

tree of Kn.

All the vertices of Kn are pairwise adjacent and we can see that for all u, v ∈ V , the distance

between the corresponding nodes in the tree is 2 which is within the specified range.

In the next theorem, we show that every complete k-partite graph is a PCG.

Theorem 6.1.2 Every complete k-partite graph is a PCG.

Let, G = (V,E) be a k-partite graph. Let, m1,m2, . . . ,mk be k independent sets of G and

n1, n2, . . . , nk be the corresponding number of vertices of these independent sets. We denote

the jth vertex of ith independent set as mi,j. Now, we organize each partite set as a star as

47
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(b)(a)

a a

b b

c cd d

e e

dmin = 2 dmax = 2

Figure 6.1: A complete graph and it’s PCG.

Theorem. 6.1. Then we connect the bases of all the stars to a single node as illustrated in

Fig. 6.2. Let, the weight of each of the edge of the resulting tree (T ) is one. Now if we take

dmin = dmax = 4, the resulting tree (T ) is the pairwise compatibility tree of G.

Here, for any u, v ∈ mi; i ∈ 1, 2, . . . , k, the distance between the corresponding nodes in T

is 2 which is less than dmin and for any u ∈ mi and v ∈ mj, where i, j ∈ 1, 2, . . . , k and i ̸= j,

the corresponding distance in T is 4 which is within the range. So, G is the PCG of T for the

specified choice of dmin = dmax = 4.

So far we deal with complete graph and complete k-partite graph which is relatively easy

problem. In the following two theorem we focus on the two restricted set of general bipartite

graph.

Theorem 6.1.3 A bipartite graph Km,n is a PCG if there exist two nonempty sets X and Y

where X ∈ m and Y ∈ n such that there is no edge uv, u ∈ X and v ∈ Y and Km−X,n and

Km,n−Y are complete bipartite graphs.

Fig. 6.3 illustrates an example of the bipartite graph as specified in Theorem. 6.1.3. Here

m = 5, n = 4, X = {1, 2, 3} and Y = {1, 2}. Now we give a constructive proof of Theo-

rem. 6.1.3.
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Figure 6.2: PCG of a K-partite graph.
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Figure 6.3: A special case of bipartite graph as of Theorem 6.1.3.
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Let, G = (V,E) be a bipartite graph (Km,n) with |X| = x and |Y | = y. Now construct two

caterpillars (Cm and Cn) with the vertices of two partite sets as the leaves of the caterpillars

such that the rightmost x leaves of Cm and the leftmost y leaves of Cn correspond to X and

Y respectively. Fig. 6.4(a) depicts this construction. Now we construct a single tree (T ) by
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Figure 6.4: General Construction of PCG of the bipartite graph of Theorem 6.1.3.
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connecting Cm and Cn through a linking edge as illustrated in Fig. 6.4(b). Now we give suitable

weight to the edges of T such that T becomes the pairwise compatibility graph of G for a specific

choice of dmin and dmax. Let, the weight of the linking edge is lw and l = max{m,n}. Then we

take lw = 2l. The weights of all the edges connecting the leaves to the spine of the caterpillar is

1 except for the leaves correspond to X and Y . The weights of the edges connecting x vertices

are l+ 1, l, l− 1, . . . , l− x+ 1 where l+ 1 is the weight of the edge connected to the rightmost

vertex and l − x + 1 is for the leftmost vertex of X. And similarly the weights of the edges

connecting y vertices are l + 1, l, l − 1, . . . , l − y + 1. But here l + 1 is the weight of the edge

connected to the leftmost vertex and l − x + 1 is for the rightmost vertex of Y . This weight

allocation is illustrated in Fig. 6.4(c). Now if we take dmin = 2l + 4 and dmax = 4l + 1, the

resulting tree (T ) generates G. And hence we are done. If we apply this construction to the

graph shown in Fig. 6.3, the resulting tree would be as illustrated in Fig. 6.5.
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Figure 6.5: A bipartite graph as of Theorem 6.1.3 and it’s PCG .

Now we take a look why these choices of weights serve our purpose. The distance between

the first and the last leaf of Cm and Cn are m+ l+1 and n+ l+1 respectively [see figure]. Since

l = max{m,n}, the maximum possible distance between two leaves of the same caterpillar is

2l+1. The distance between any two leaves of the same caterpillar should be out of the range.
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So dmin must be greater than 2l + 1. And the distance between the two leaves of different

caterpillar that are connected in G must be within the range. Hence we take lw = 2l. Now the

distance between any two leaf u and v where u ∈ X and v ∈ Y is (l+ 1)+ (l+1)+ 2l = 4l+ 2

which is greater than dmax. The maximum possible distance between two vertices that are

connected in G is l + 2l + (l + 1) = 4l + 1 (distance between the corresponding leaves of the

first vertex of the larger partite set and the last vertex of the smaller partite set). And the

minimum distance is 2 + 2l + 2 = 2l + 4 while x = y = 1 (distance between the (m − 1)th

leaf of m-partite set and 2nd leaf of n-partite set). Fig. 6.4(c) illustrates all about these weight

calculations.

Theorem 6.1.4 A bipartite graph Km,n with two partite sets m and n (without loss of general-

ity, we assume m ≥ n) is a PCG if any vertex u ∈ {1, 2, . . . ,m} is connected to dm or less no.

of sequential vertices in n-partite set where dm = max{degree(u)}; u ∈ {1, 2, . . . ,m} such that

if degree(u) = dm then it’s neighbors are arranged sequentially from any position in n-partite

set, otherwise it’s neighbors must be the first or last degree(u) number of vertices of n-partite

set.
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Figure 6.6: A special case of bipartite graph as of Theorem 6.1.4.

Fig. 6.6 illustrates an example of the bipartite graph as specified in Theorem. 6.1.4. Here

m = 5, n = 4 and dm = 3. Here degreem(1) = degreem(3) = dm (here degreem(i) denotes the

degree of the ith vertex of m-partite set) and other vertices of m-partite set are of less degree.

Two vertices 1 and 3 are connected to 3 sequential vertices of n-partite set having neighbors



6.1. PCG Graphs 53

{1, 2, 3} and {2, 3, 4}. Again degreem(2) = 2 which is less than dm and it’s neighbors are the

first two vertices of other partite set. Similarly, vertices 4 and 5 are of degree one and their

neighbor is the last vertex of the n-partite set.

Now we proceed to the constructive proof of Theorem. 6.1.4. Let, G = (V,E) be a bipartite

graph (Km,n). Now construct two caterpillars (Cm and Cn) with the vertices of two partite

sets as the leaves of the caterpillars as illustrated in Fig. 6.7(a). Now we construct a single
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Figure 6.7: General Construction of PCG of the bipartite graph of Theorem 6.1.4.

tree (T ) by connecting Cm and Cn through a linking edge as illustrated in Fig. 6.7(b). The

weight of all the edges of Cn is one. Let, l, Wm(i), label(i) and Nskip(i) denote the weight of

the linking edge, the weight of the edge that connects the ith leaf of Cm to it’s spine, the label
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(numbering) of the ith vertex and the number of vertices that has to be skipped to reach the

first neighbor respectively. In Fig. 6.6, Nskip(1) = 0, Nskip(3) = 1, Nskip(4) = 3 etc. Now we

define the following distances.

d′max = m+ n

d′min = d′max − (dm − 1)

l = 2(m+ n− 1)− d′min + 1

dmin = d′min + l

dmax = d′max + l

Wm(i) is defined as

Wm(i) =



d′min − ((m− label(i)) +Nskip(i) + 1) if degreem(i) = dm(i) or degreem(i) <

dm(i) and its neighbors are the first

degreem(i) vertices of n-partite set

d′max − (degreem(i)− 1)− (m− label + 1) otherwise

(6.1)
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Figure 6.8: A specific example of graph as of Theorem 6.1.4 and it’s PCG.

The pairwise compatibility tree T of the graph G shown in Fig. 6.6 is illustrated in Fig. 6.8.

Now we take a look at these weight calculations to see how they come. Here, without loss

of generality, we assume that m ≥ n. d′min and d′max do not take the weight of the linking edge
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in account. For the same reason as stated in Theorem. 6.1.3, dmin must be greater than the

maximum possible distance between the two leaves of Cm. And l should be tuned accordingly

so that distance between two connected vertices is greater than the maximum possible distance

between the two leaves of Cm. The maximum possible distance between the two leaves of Cm is

the distance between leaf 1 and m when they get their maximum possible weight. Again they

get their maximum weight when they are connected only to the first vertex the n-partite set.

Using the formula Wm(i) = d′max−(degreem(i)−1)−(m−label+1) as stated in Eqn. 6.1 we get

Wm(1) = m+n−(1−1)−(m−1+1) = n andWm(m) = m+n−(1−1)−(m−m+1) = m+n−1

that is maximum possible weight of leaf 1 andm are n andm+n−1 respectively. Now maximum

possible distance between two vertices of the same caterpillar is

maximum distance between leaf 1 and m

= maximum weight of leaf 1 + maximum weight of leaf m +(m− 1)

= n+ (m+ n− 1) + (m− 1)

= 2(m+n−1). Then dmin must be greater than 2(m+n−1) and we take dmin = 2(m+n−1)+1.

Now l = dmin − d′min = 2(m + n − 1) − d′min + 1. In Eqn. 6.1 the calculation is such that if

degreem(i) = dm(i) or degreem(i) < dm(i) and its neighbors are the first degreem(i) vertices of

n-partite set then the distance to it’s first neighbor is dmin and otherwise the distance to it’s

last neighbor is dmax.

6.2 Conclusion

In this chapter we characterize some classes of graphs as PCG and also give constructive proof

of our theorems.



Chapter 7

Improper PCG

In this chapter we introduce two new concepts that we call redundancy and improper PCG .

We also identify some properties associated with improper PCG. We have proved that every

graph is improper PCG. We also give a heuristic algorithm to construct improper pairwise

compatibility tree of triangular planar graphs.

7.1 Improper PCG

When there is multiple existence of the same leaf then we call the extra leaves as redundancy. A

graphG is an improper PCG if the corresponding pairwise compatibility tree can be constructed

introducing some redundancies. Fig. 7.1(b) shows an example of redundancy and improper

PCG corresponding to the graph shown in Fig. 7.1(a). Here the node labeled with number 6

appears twice, one of which is called redundancy (enclosed with grey circle). We denote the

number of redundancies as nrd . In an improper PCG, nrd ≥ 0. Obviously, a PCG is also an

improper PCG but the reverse is not necessarily true.

Now we proceed to the fact that every graph is an improper PCG.

Theorem 7.1.1 Every graph is an improper PCG.

Let, G = (V,E) be any graph. First, we construct a star for each vertex u ∈ V where the

corresponding vertex and the its neighbors are the leaf of the star. The weight of the edge

56
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Figure 7.1: An improper PCG of a graph.

connecting u to the base of the star is 1 whereas the other edges incident to its neighbors are of

weight 2. Then we connect all the bases of the stars to a single node through edges of weight

2. Now if we take dmin = dmax = 3, we are done.

Fig. 7.2 illustrates the pairwise compatibility tree of Kn constructed by this method and

this is also the worst case of our construction where the number of leaves required is n2 for a

graph with n vertices. And the total number of nodes is n2+n+1 (including leaf and all other

intermediate node).

n−11 12 22 33 3

111 222222222

nn n

dmin = 3

dmax = 3

Figure 7.2: An improper PCG for any graph of n vertices.

For better performance, while we are constructing the star for a vertex u ∈ V , we can

exclude its neighbor v ∈ V if the corresponding star of v is already been constructed. Because

the connectivity of u and v is already taken in account in the star corresponding to v. That is,
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if we number the vertices of G numerically and construct star for the lowest numbered vertex

first, then for the next lowest and so on, then we can exclude all lower numbered neighbors of

any vertex while constructing the corresponding star. Fig. 7.3 illustrates the tree constructed by

this method for Kn. Here total number of leaves is, n+(n−1)+(n−2)+ . . .+2 = n(n−1)/2−1

and total number of nodes is n(n− 1)/2− 1 + (n− 1) + 1 = (n− 1)(n+ 2)/2.

1 22 3 3 4

11 1222222 2

nn n n − 1

dmin = 3

dmax = 3

Figure 7.3: Improved construction of improper PCG for graphs with n vertices.

Before proceed to our heuristic algorithm we discuss some special cases of planar triangular

graphs for which pairwise compatibility graph can be constructed without any redundancy.

The pairwise compatibility graph of just a triangle is a caterpillar as illustrated in Fig. 7.4(a),

(b) where dmin = 3 and dmax = 4. Now we consider our first case which we call case1 and

here we merge arbitrarily large number of triangles such that two consecutive triangles share

an edge and the vertices of the graph can be numbered in such a way that the endpoints of an

edge shared by two triangles get consecutive number, i.e, for an shared edge uv, if u get label

n then the label of v is n− 1 or n+ 1. We call this sort of numbering, sequential numbering

(a) (b)

11 2

2

33

dmin = 3

dmax = 4

Figure 7.4: A triangle graph and it’s PCG.

Fig. 7.5 shows an example of this sort of graphs. Now we can merge the individual caterpil-
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lars for each of the triangle as shown in Fig. 7.4(b) and we get the tree as in Fig. 7.5(b). Choice

for dmin and dmax remains the same as it was for a single triangle, i.e, 3 and 4 respectively.
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5
5
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Figure 7.5: A special case (case 1) of triangular graph and it’s PCG.

Now we consider another case which we call case 2. We can extend a triangular planar

graph by merging arbitrarily large number of triangles such that they do not share any edge

rather they share only one vertex as shown in Fig. 7.6(a).

(b)(a)

1
1

2 2

23 3

4

4

5

5

dmin = 5

dmax = 6

Figure 7.6: A special case (case 2) of triangular graph and it’s PCG.

Fig. 7.6(b) shows the corresponding pairwise compatibility tree. Weight of all the edges

are 1 except those that are labeled as 2. Here dmin = 5 and dmax = 6. Here we can see that

d(1, 2) = d(2, 3) = d(3, 4) = 5, d(1, 3) = 6 that are within the range but d(1, 4) = 9 which is

expectedly out of the range. We shall use these two cases (denoted by case 1 and case 2) in

our heuristic algorithm described in section.

Now we consider both the cases simultaneously. Fig. 7.7(a) shows an example of such a

graph where two triangles can share either a single vertex or an edge and for the later case

the shared edge is such that it’s endpoints are labeled with consecutive numbers (as described
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above). Now merging the corresponding construction processes of these two cases, we can

construct the pairwise compatibility tree and Fig. 7.7(b) illustrates such construction. Here

dmin = 5 and dmax = 6. Measuring the distances between different leaves, the validity of such

construction can be easily verified. Hence we characterize a restricted class of planar triangular

graph, that fall in either of the above two cases or both the cases simultaneously, as PCG.
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Figure 7.7: Combination of case 1 and case 2.

Now we give an heuristic algorithm to construct pairwise compatibility tree of any planar

triangular graph allowing redundancies (nrd ≥ 0).

Let, G = (V,E) be an planar triangular graph. First, we construct the internal dual

G∗ = (V ∗, E∗). Now we have to traverse G∗ starting from an arbitrary vertex u ∈ V ∗. While

moving from one u to v where u, v ∈ V ∗, we cross an corresponding edge e ∈ E. If e has

sequential numbering then we add the tree of the corresponding face of v (as was case 1) as in

Fig. 7.5. Otherwise we delete one of the two edges (e1, e2) other than e of the corresponding

face of v. If ei, i ∈ 1, 2 is not shared with any other face then ei is the edge to be deleted. If

both the edges are shared with other face or not, then any one of e1 and e2 can be deleted. If

any one or both of e1 and e2 is shared then after deletion of one, the next face on the traversal

is connected as case 2 as illustrated in Fig. 7.6. If none of e1 and e2 is shared then after deletion

of one we have just one edge connected to the face and can extend the tree as in Fig. 7.7. In
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this way we traverse the entire dual graph and build the tree incrementally.

Now we have to consider the edges that was deleted. Let, uv ∈ E be an deleted edge.

Then either one or both of the endpoints are already present in the tree. we choose the leaf

corresponding to u or v that is present in the tree and connect the other one to the parent of

the earlier. Fig. 7.8 illustrates this procedure.

7.2 Conclusion

In this chapter we describe our notion of improperPCG and also present our findings associated

with it.
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Figure 7.8: Construction of the PCG according to the heuristic algorithm.



Chapter 8

Conclusion

This thesis focuses on the utilization of the graph theory in bioenergetics. This thesis is orga-

nized around two important field of bioinformatics : haplotyping and phylogeny.

Haplotyping can be done in many approaches. Most of out work in this field was devoted

to comparing two algorithms to generate haplotype for an individual from SNP fragments. We

compare a heuristic algorithm based on minimum error correction with a genetic algorithm and

qualify the former as superior.

In this thesis we were mainly concerned with pairwise compatibility graphs. We have

established some important classes of graph as PCG. We also provide efficient construction

method to construct the trees that can generate those PCGs. Moreover, we introduce the notion

of improperPCG and redundancy and also unveil the fact that every graph is an improper

PCG. The construction methods that we provided in this thesis is very much generic and hence

offer great opportunity and flexibility to utilize them in recognizing more classes of graph as

PCG.

Identifying the boundary of PCG graphs i.e. which graphs are PCG and which are not

is still to be done and we think that it would be an interesting research area. We left it as a

future work and interested researchers may explore this fascinating area of pairwise compatible

graph.
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